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Abstract

The interaction of a quantum system with its surrounding environment
results in losses of quantum correlations in the state of the system due
to a decoherence process. The origin of decoherence is often attributed
to the system–environment entanglement, which is not the only source of
decoherence, however. Here we show that environment-induced coherent
quantum fluctuations, i.e. Lamb or Stark shift-like effects, can also lead to
the emergence of decoherence, which we call an incoherence process, even
in the absence of the system–environment entanglement. We isolate the
incoherence process from a general decoherence dynamics and formulate the
exact equation of motion governing the incoherence dynamics in the absence of
entanglement-induced decoherence. We exemplify the incoherence dynamics
for a number of different situations including chaotic, regular and decoherence-
free environments.

PACS numbers: 03.65.−w, 05.30.−d, 03.65.Yz, 03.67.Lx

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement and decoherence are two distinguishing features of quantum mechanics with
no classical analog. Entanglement is a key ingredient of quantum information theory [1],
with applications ranging from quantum teleportation [2], quantum key distribution [3], super
dense coding [4] to telecloning [5]. While entanglement is rightfully a desirable feature, the
entanglement of a quantum system with its surrounding environment also leads to decoherence
[6, 7], which is one of the primary obstacles on the roadway to the development of quantum
information technologies [1]. Understanding the underlying mechanisms behind these two
phenomena and especially the interplay between them is of fundamental importance and is
the subject of numerous studies [1–15].
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In the course of open system dynamics [6–15], a quantum subsystem loses its well-defined
quantum correlations due to interactions with its surrounding environment. This process, by
and large, is known as decoherence. The system–environment entanglement (SEE) is one of the
well-known, but not the only, sources of decoherence. Hence, decoherence may not be avoided
even in the absence of SEE. The subject matter of this paper is an alternative mechanism of
decoherence, which induces irreversibility (i.e. non-unitarity) into quantum dynamics even if a
quantum subsystem of interest is not entangled with its surrounding environment. Henceforth,
we refer to the decoherence phenomenon in question, which emanates from environment-
induced coherent quantum fluctuations, as incoherence, whereas we refer to the decoherence,
which manifests due to the SEE, as entanglement-induced decoherence (EID).

In a general decoherence scenario, in which a quantum subsystem might be subject to
EID as well as incoherence, one may not be able to distinguish between these two processes.
This is because both processes induce irreversibility into quantum dynamics and cause the
subsystem’s state to lose its purity. However, the mechanism of irreversibility induced by
these two processes is of a different physical origin. To establish the differences, one can
imagine a quantum subsystem interacting with an equilibrium environment, the state of which
is of non-zero entropy represented by a Gibbs state. EID occurs due to the entanglement of
the subsystem’s state with possibly each pure state component of the Gibbs state. Hence,
EID is a correlation transfer process between the states of the subsystem and its surrounding
environment. Incoherence does not necessitate the SEE, but it should be expected whenever
an open quantum system is subject to environment-induced coherent shifting. Effects of
this kind are also known as Lamb or Stark shift-like effects in the theory of open system
dynamics [8]. In the presence of coherent shifting, the subsystem Hamiltonian is shifted in
a slightly different magnitude for each pure state component of the Gibbs state. As a result,
the subsystem experiences coherent quantum fluctuations. During the incoherence process,
quantum correlations of the subsystem do not leak into the environment; nevertheless, the state
of the subsystem becomes a statistical mixture due to an incoherent superposition of coherent
probability amplitudes. Hence, the incoherence, in essence, is a non-unitary manifestation of
unitary quantum fluctuations.

In this study, we completely detach the incoherence process from a general decoherence
dynamics and deliver an exact formulation of absolute incoherence dynamics, namely
incoherence dynamics in the absence of EID. While incoherence is an intrinsic feature of
open system dynamics, to our knowledge, no attempt has been made for an exact formulation
of absolute incoherence dynamics, which is quite straightforward, once certain conditions
annulling the SEE are determined. We establish a certain symmetry condition on system–
environment interactions to avoid the SEE, and by starting from first principles and with quite
general assumptions, we formulate the exact equation of motion for an arbitrary quantum
system (interacting with an arbitrary environment) undergoing the absolute incoherence
process. Hereafter, unless otherwise stated for emphasis, we refer to the absolute incoherence
simply as incoherence.

The exact formulation of the incoherence dynamics, without any restriction on system or
environment Hamiltonians, requires a certain symmetry condition on interaction Hamiltonians
so that the SEE can be avoided. To determine this symmetry condition, we utilize the theory
of decoherence-free subspaces (DFSs) [16–19]. We show that the SEE can be avoided when
an environment evolves in a DFS. While the dynamics of the environment evolves unitarily in
a DFS, it turns out that the subsystem dynamics is non-unitary. By using the decoherence-free
environment (DFE) condition, we derive an exact Kraus decomposition [12] for the subsystem
density in which each Kraus operator in the decomposition takes an explicit form. The
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resulting Kraus decomposition defines the exact equation of motion for incoherence dynamics
in the absence of EID.

We borrow the term ‘incoherence’ from nuclear magnetic resonance (NMR) quantum
computation studies [20]. The mechanism of incoherence studied here is reminiscent of
the mechanism of incoherence or dephasing of spins in NMR studies [20]. In a typical
NMR experiment, the spins of an ensemble experience the external field in slightly different
magnitudes. While each spin of the ensemble evolves unitarily, the dynamics of the ensemble
appears to be non-unitary. Hence, the incoherence in NMR studies [20] is defined as a loss
of purity in the ensemble-averaged state while the decoherence refers to a loss of purity in
the states of individual spins. Here our interest is not in an ensemble, but in an individual
quantum system. In the context of NMR, our focus is then on the incoherence process in
the decoherence dynamics of an individual spin. Hence, the incoherence process formulated
here is a component of decoherence dynamics and therefore should be distinguished from the
incoherence phenomenon in NMR studies [20].

Incoherence dynamics may appear in certain master equations [21], in an exactly solvable
spin-bath model [22] or in the semi-classical limit, where the SEE may be negligible; a
quantum system interacting with a chaotic bath of thermodynamic dimension undergoes only
incoherence dynamics [23]. In principle, any condition nullifying the SEE should suffice the
emergence of absolute incoherence dynamics. Interesting cases arise for non-standard models
of decoherence. For example, it has been shown that chaotic intra-environmental interactions
suppress EID [23–28]. More recently, we have also shown that fast environmental dynamics
leads to a rapid suppression of EID [29]. In such cases, EID can be suppressed and the
incoherence process emerges as the only source of decoherence. Here, by comparison between
exact numerical and Kraus decomposition calculations, we demonstrate the onset of absolute
incoherence as a result of suppression of EID for a number of different situations including
chaotic, regular and DFEs by studying the open dynamics of a qubit in an isolated quantum
computer (QC) core with static internal imperfections [30].

The organization of this paper is as follows. In section 2, we drive the exact quantum
equation of motion for incoherence dynamics. In section 3, we present our spin spin–bath
model. In section 4, we report our results. In section 5, we discuss these results. In section 6,
we conclude our study.

2. Formulation of incoherence dynamics

Starting from first principles, we aim at formulating incoherence dynamics for an arbitrary
quantum subsystem interacting with an arbitrary environment. In this section, we first outline
the operator sum representation of the open system dynamics [12]. Second, we review the
Hamiltonian formulations of DFSs [16–19] and determine the required conditions under which
an environment evolves in a DFS. Third, by using the fact that the SEE is avoided under the
DFE condition we obtain an exact Kraus decomposition governing incoherence dynamics.

2.1. Operator sum representation

We consider a quantum subsystem of interest and its surrounding environment as a bipartite
closed system represented by a total Hamiltonian of the form

Ĥ = Ĥ S +
∑

μ

ŜμB̂μ + Ĥ B, (1)
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where Ĥ S is the subsystem, ŜμB̂μ are the interactions and Ĥ B is the environment or
bath Hamiltonians. The exact quantum dynamics evolves unitarily from the Liouville–von
Neumann equation, the solution of which is of the form

ρ̂(t) = Û (t)ρ̂(0)Û †(t), (2)

where Û (t) = exp{−(i/h̄)Ĥ t} is the unitary operator governing the dynamics and ρ̂(0) =
ρ̂S(0) ⊗ ρ̂B(0) is the total initial density operator of a product form for the system and bath
degrees of freedom. While we leave the initial system density ρ̂S(0) unspecified, we assume
that the bath density is diagonal in the energy basis ρ̂B(0) = ∑

m pm|m〉〈m|, where Ĥ B |m〉 =
Em|m〉, and the usual completeness relations are

∑
m |m〉〈m| = Î B and 〈n|m〉 = δn,m. Due to

thermodynamics considerations, an appropriate choice of a bath state is of a canonical form for
which bath populations are given by pm = exp{−βEm}/∑

n exp{−βEn} for a fixed inverse
temperature β = 1/kBT , where kB is the Boltzmann constant.

To obtain the time-evolved subsystem density ρ̂S(t), we trace over the bath degree of
freedom, ρ̂S(t) = TrB{Û (t)ρ̂(0)Û †(t)}, by using the complete bath eigenbasis {|n〉},

ρ̂S(t) =
∑
n,m

pm〈n|Û (t)|m〉ρ̂S(0)〈m|Û †(t)|n〉, (3)

which can be written in the following compact form:

ρ̂S(t) =
∑
n,m

K̂n,m(t)ρ̂S(0)K̂†
n,m(t), (4)

in terms of the Kraus operators

K̂n,m(t) = √
pm〈n|Û (t)|m〉. (5)

The Kraus decomposition (4) describes a general decoherence scenario in which a
quantum subsystem evolves under the influences of both EID and incoherence processes.
These processes can be distinguished by rewriting (4) in the form

ρ̂S(t) =
∑

n

K̂n,n(t)ρ̂S(0)K̂†
n,n(t) +

∑
n,m

K̂n,m(t)ρ̂S(0)K̂†
n,m(t)δ−1

n,m, (6)

where δ−1
n,m = 1 for n �= m and δ−1

n,m = 0 for n = m. We will show that the second sum above,
responsible for EID, vanishes when the interaction Hamiltonians cannot generate the SEE and
the first sum induces the incoherence process.

2.2. Decoherence-free environments

In this section, by exploiting certain symmetry conditions on the system–environment
interactions we eliminate the SEE. To do so, we refer to the theory of DFSs [16–19]. In
the following, we briefly review the basic ideas behind the Hamiltonian formulations of DFSs
[16–19] and determine conditions for DFEs.

A DFS is a subspace in which the quantum dynamics is unitary even in the presence
of system–environment interactions. To construct a DFS, one starts with the assumption
[16] that there exists a set of degenerate eigenvectors of system coupling operators such that
Ŝμ|s̃〉 = sμ|s̃〉. Accordingly, if Ĥ S leaves the subspace H̃S , spanned by these eigenvectors
H̃S = span{|s̃〉} invariant, it follows that the dynamics initiated within a DFS evolves unitarily
in this DFS [16–18]. Determining a similar condition for a DFE is effortless. Trivially,
one only needs to interchange the roles of system and environment. Hence, by stipulating
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that the degenerate eigenvectors B̂μ|b̃〉 = bμ|b̃〉 exist and span the DFS for the environment
H̃B = span{|b̃〉}, the total Hamiltonian in the basis {|b̃〉} can be expressed as

Ĥ =
[
Ĥ S +

∑
μ

Ŝμbμ

]
⊗ Î B + 1̂S ⊗ Ĥ B = H̃ S ⊗ Î B + 1̂S ⊗ Ĥ B, (7)

which clearly enables us to decouple the system and bath dynamics:

ρ̂(t) = ŨS(t)ρ̂S(0)Ũ
†
S(t) ⊗ ÛB(t)ρ̂B(0)Û

†
B(t), (8)

where ŨS(t) = exp{−(i/h̄)H̃ St} and ÛB(t) = exp{−(i/h̄)Ĥ Bt}. Note that since the system
and bath dynamics are decoupled, the time evolution cannot generate the SEE. By tracing ρ̂(t)

over the system degree of freedom, one can readily show that the environment evolves in a
decoherence-free fashion, i.e.

ρ̂B(t) = TrS{ρ̂(t)} = ÛB(t)ρ̂B(0)Û
†
B(t). (9)

However, since an environment in many situations is the uncontrollable degree of freedom,
finding the appropriate degenerate basis {|b̃〉} for a DFE is a rather mysterious task, if at all
possible. In this regard, our choice of the appropriate basis is somewhat limited, yet this
limitation leads us to a rather obvious choice of basis. Due to thermodynamic considerations,
we have already assumed that the bath density ρ̂B(0) is diagonal in the energy representation.
Hence, ρ̂B(0) is a function of the bath Hamiltonian Ĥ B so that [ρ̂B(0), Ĥ B] = 0. In what
follows, we demand that the bath coupling operators commute with the bath Hamiltonian, i.e.
[B̂μ, Ĥ B] = 0. Hence, our DFE condition is that the family of operators F ≡ {B̂μ, Ĥ B}
consists of mutually commuting Hermitian operators and therefore F is simultaneously
diagonalizable.

Let the eigenbasis {|n〉} denote the complete set of eigenfunctions diagonalizing Ĥ B , i.e.
Ĥ B |n〉 = En|n〉 and thus B̂μ|n〉 = bn

μ|n〉. The total Hamiltonian in this basis {|n〉} has the
representation

Ĥ = Ĥ S ⊗ 1̂B +
∑

μ

Ŝμ ⊗
∑

n

bn
μ|n〉〈n| + 1̂S ⊗

∑
n

En|n〉〈n|. (10)

Defining the initial states of the form ρ̂n(0) = ρ̂S(0)⊗|n〉〈n|, the solution of the Liouville–
von Neumann equation (2) can be written as

ρ̂(t) =
∑

n

pnρ̂n(t) and ρ̂n(t) = Û (t)ρ̂n(0)Û †(t). (11)

The form of the total Hamiltonian (10) suggests that the action of the propagator Û (t) on each
ρ̂n(0) is as follows:

ρ̂n(t) = Ûn
S(t)ρ̂S(0)Û

n†
S (t) ⊗ ÛB(t)|n〉〈n|Û †

B(t). (12)

Here Ûn
S(t) = exp

{−(i/h̄)Ĥ n
St

}
, where Ĥ n

S = Ĥ S +
∑

μ Ŝμbn
μ. It is clear from

equation (12) that the time evolution cannot generate the SEE. In what follows, since
TrS

{
Ûn

S(t)ρ̂S(0)Û
n†
S (t)

} = 1 for each n, by tracing ρ̂(t) over the system degree of freedom,
we obtain the DFE evolution

ρ̂B(t) = TrS{ρ̂(t)} = ÛB(t)ρ̂B(0)Û
†
B(t). (13)

It is noteworthy that the latter definition of DFEs is different than the former definition
in terms of simultaneous degenerate eigenstates. The latter definition is equivalent to the
original definition of DFSs by Zurek [19] in terms of pointer states, which does not require
the degeneracy of eigenstates. While both definitions lead to DFEs, as we point out in
the following section, they do have fundamentally different consequences on the subsystem
dynamics.
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2.3. Kraus decomposition of incoherence process

In the previous section, our focus was on the environment degree of freedom, and we have
shown that the SEE cannot be generated under the DFE conditions. In this section, we
focus on the subsystem degree of freedom and explore open system dynamics under the DFE
conditions.

For each time-evolved state ρ̂n(t), tracing equation (12) over the environment degree of
freedom gives

TrB{ρ̂n(t)} = Ûn
S(t)ρ̂S(0)Û

n†
S (t), (14)

by using which, the time evolution of the subsystem density can now be expressed as

ρ̂S(t) =
∑

n

K̂n,n(t)ρ̂S(0)K̂†
n,n(t) (15)

in terms of the Kraus operators

K̂n,n(t) = √
pn exp

{
−(i/h̄)

(
Ĥ S +

∑
μ

Ŝμbn
μ

)
t

}
. (16)

Equation (15) is the final form of the Kraus decomposition, which defines the exact equation
of motion for a subsystem density undergoing incoherence dynamics in the absence of SEE.

The irreversibility brought about by the Kraus decomposition (15) emerges from the
environment-induced coherent shifting. Each pure state component of the thermal bath state
shifts the free system Hamiltonian as Ĥ S → Ĥ n

S = Ĥ S +
∑

μ Ŝμbn
μ. Presuming that bn

μ �= bm
μ ,

i.e. the diagonal matrix elements of B̂μ are all different, the state of the subsystem evolves
under M slightly different shifted-system Hamiltonians, where M refers to the number of
populated bath states for a given bath temperature. Each shifted-system Hamiltonian changes
the coherent probability amplitude of a subsystem’s state by a slightly different magnitude.
The convex combination of these probability amplitudes results in destructive interferences
which in turn induce the non-unitary dynamics.

The normalization condition for the Kraus operators
∑

n K̂n,n(t)K̂†
n,n(t) = Î S indicates

that the open system dynamics is unitary, provided that the Kraus decomposition (15) has only
one term or one type of terms. Hence, a pure environment state does not induce irreversibility
into the subsystem dynamics, which means that while the coherent shift process does not
cease, the incoherence can be suppressed at absolute zero temperature. However, there is no
such restriction on the EID which manifests as long as the system and environment states are
entangled even at absolute zero temperature. The incoherence dynamics is also unitary when
bn

μ = bμ, i.e. the bath coupling operators are the scalar operators B̂μ = bμÎB . In such cases,
the Kraus decomposition includes only one type of terms and is reduced to the form

ρ̂S(t) = K̂(t)ρ̂S(0)K̂†(t), where K̂(t) = exp

{
−(i/h̄)

(
Ĥ S +

∑
μ

Ŝμbμ

)
t

}
. (17)

Hence, the open system dynamics is unitary but is also shifted. Note that the above form
of Kraus decomposition can be achieved for the DFS condition B̂μ|b̃〉 = bμ|b̃〉. Indeed, by
tracing equation (8) over the environment degree of freedom one can obtain the decoherence-
free evolution given by equation (17). Thus, the existence of degenerate eigenstates leads to
decoherence-free time evolutions for both the system and environment.

Interestingly, the equation of motion (15) of incoherence dynamics is identical to the
chaotic Kraus decomposition (CKD) derived in our previous studies [23]. Hence, the CKD
only predicts incoherence dynamics but nothing more. The derivation of the CKD is based
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on the fact that the square of the off-diagonal matrix elements of the bath coupling operators
vanishes in the eigenbasis of a large chaotic bath Hamiltonian, i.e. |〈n|B̂μ|m〉|2 → 0 when
N → ∞, where N is the number of bath modes. In previous studies of the CKD [23],
the incoherence phenomenon is not appreciated. As our current formulation shows, the
incoherence process, by no means, is restricted to large chaotic environments, but in fact is
an intrinsic property of the open system dynamics. Hence, the Kraus decomposition derived
here is valid for an arbitrary environment of an arbitrary dimension as long as the conditions
nullifying the SEE are met.

It is noteworthy that our DFE condition [B̂μ, Ĥ B] = 0 may seem a very strong requirement
to suppress the formation of SEE. Nevertheless, physical situations exist in that this requirement
is exactly satisfied. Examples include a spin spin–bath model with interactions modeled by an
isotropic Ising-type coupling [22] and, as mentioned above, a quantum subsystem interacting
with a chaotic bath of thermodynamics dimension [23]. One interesting question regarding
our DFE condition is whether [B̂μ, Ĥ B] = 0 is a necessary or only a sufficient condition for
the emergence of absolute incoherence dynamics. Recent studies of decoherence show that
the suppression of EID by chaotic baths maximizing intra-bath entanglement [23–28] and by
non-chaotic baths with fast internal dynamics [29] is a generic effect, which is also independent
of the type of system–environment coupling. This, in turn, suggests that [B̂μ, Ĥ B] = 0 may
just be a sufficient condition. To quantify the SEE, one can refer to the covariance function
[31]

Cn
μ(t) = Tr{ŜμB̂μρ̂n(t)} − Tr{Ŝμρ̂n(t)}Tr{B̂μρ̂n(t)}, (18)

where ρ̂n(t) is the time-evolved total density given by equation (11). In the absence of SEE,
the covariance Cn

μ(t) = 0 and thus EID vanishes. In the light of recent studies [23–29], one
can then expect that Cn

μ(t) → 0 should lead to the absolute decoherence dynamics even though
[B̂μ, Ĥ B] �= 0. By studying a number of examples in the following section, we will conclude
that this is indeed the case.

3. Examples

Spin–bath models [32] have received considerable recent attention because of their relevance
to quantum information processors. Here we study a spin spin–bath model to exemplify the
incoherence process for a number of different situations including chaotic, regular and DFEs.
We expect that any approximate condition nullifying the SEE should lead to the onset of the
absolute incoherence dynamics. Since one of the objectives of our study is to make a clear
distinction between the incoherence and EID processes, we have chosen our examples to test
the validity of conditions supporting the absolute incoherence dynamics. To do so, we compare
the predictions of the Kraus decomposition (15) to the exact numerical results obtained via the
numerical solutions of the Liouville–von Neumann equation for our spin spin–bath model.

Our spin spin–bath model describes an open system dynamics of a qubit in an isolated
many-qubit QC with static internal imperfections [29]. Residual static qubit–qubit interactions
arising in a many-qubit QC core generate an unavoidable internal decoherence mechanism for
ideal computational states of qubits [26–29]. Therefore, even though the external decoherence
time due to a macroscopic environment is long enough, and thus the QC core can be considered
as an isolated closed system, the qubits within such an isolated QC core experience their own
nearby microscopic environment and are subject to internal decoherence dynamics [26–29].

Our isolated QC model is based on Josephson junction qubit architectures [33–35], which
are promising information processor candidates due to their scalability and long external
decoherence time [33–35]. Recently, we have investigated the effects of residual static
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internal imperfection on the internal decoherence dynamics for a Josephson charge qubit
QC [26–29]. Our results showed that even though decoherence by an external macroscopic
environment is negligible, internal decoherence in an isolated QC core exists and may be
an issue of concern. Moreover, we found that the alarming source of error was unitary due
to environment-induced coherent shifts. Since incoherence dynamics originates from the
coherent shifts, an environment of qubits based on a Josephson junction QC [33–35] is an
ideal ground to study incoherence dynamics.

We present the mathematical details of our spin–spin bath model in section 3.1 and
define the parameters used in our numerical calculations in section 3.2. We summarize our
exact numerical approach in section 3.3 and give the explicit form of Kraus operators for our
spin-bath model in section 3.4. We define open system quantifiers in section 3.5.

3.1. Model

Within very long external decoherence time for the Josephson charge qubit QC [35], we
consider the QC core as a bipartite closed system represented by a total Hamiltonian of the
form

Ĥ = Ĥ S + ŜB̂ + Ĥ B, (19)

where the first term is the free system Hamiltonian of the central qubit

Ĥ S = − 1
2Bz

0 σ̂
(0)
z − 1

2Bx
0 σ̂ (0)

x , (20)

and the second term is the coupling Hamiltonian mediating interactions between the central
qubit and the nearby qubit environment:

ŜB̂ = σ̂
(0)
x/z�̂x/z where �̂x/z =

N∑
i=1

λiσ̂
(i)
x/z. (21)

Here x/z means x or z. We consider xx-type (bit-flip errors) and zz-type (phase errors)
interactions in separate calculations. We use the following effective self-interacting bath
Hamiltonian to represent the nearby qubit environment of N qubits that the central qubit
interacts with:

Ĥ B = −1

2

N∑
i=1

(
Bz

i σ̂
(i)
z + Bx

i σ̂ (i)
x

)
+

N−1∑
i=1

N∑
j=i+1

J i,j
x σ̂ (i)

x σ̂ (j)
x . (22)

Similar Hamiltonians are used in previous studies [26–29] of internal decoherence dynamics
of qubits in isolated QCs with static internal imperfections and in investigations of effects of
quantum chaos on quantum computation [30].

3.2. Numerics

Our numerical study is based on a charge-qubit QC proposal [35]. So, we scale the parameters
of our Hamiltonian, accordingly, in units of ε = 200 mK. The parameters of the central qubit
are B

x/z

0 = 1ε, which are the experimentally relevant one-qubit control parameters. We set
the value of system–bath coupling to λ = 0.05ε, which corresponds to the two-qubit control
parameter. We model one- and two-body intra-bath interactions, i.e. the parameters of the
bath qubits, by following the previous studies [26–30]. Specifically, one-qubit parameters
are sampled randomly and uniformly from the distributions Bz

i ∈ [
Bz

c − δz/2, Bz
c + δz/2

]
and

Bx
i ∈ [

Bx
c − δx/2, Bx

c + δx/2
]
, where Bx

c and Bz
c stand for the centers of the distributions and

δx/z for the detuning parameters which we set to δx/z = 0.4B
x/z
c . We also sample residual
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Table 1. A summary of numerical parameters used for different bath configurations.

Coupling xx-type zz-type

Bath configuration Bz
c Bx

c Jx Bz
c Bx

c Jx

Case I 1 1 2 1 1 2
Case II 1 4 0 1 4 0
Case III(a) 0 1 0 1 0 0
Case III(b) 0 1 0.05 1 0 0.05

qubit–qubit interactions, i.e. system–bath and intra-bath interactions, randomly and uniformly
from the distributions λi ∈ [−λ, λ] and J

i,j
x ∈ [−Jx, Jx], respectively. It should be noted

that the chosen distributions for the bath parameters are rather narrow square boxes [26–30].
This is to reflect that qubits are relatively stable two-level systems. In an actual experimental
situation, the type and magnitude of imperfections should be intrinsic to the experimental
conditions and physical set-up. Therefore, the chosen distributions for our bath parameters
should be considered as an idealization.

By three different choices of bath parameters we obtain three different cases, each of which
supports the absolute incoherence dynamics. The numerical values of the bath parameters for
three different cases are summarized in table 1. We use two different approaches to achieve the
absolute incoherence dynamics for our examples. Our first approach is based on the facts that
EID can be suppressed by chaotic baths [23–28] (case I) maximizing intra-bath entanglement
[24] and by regular (non-chaotic) baths (case II) with fast internal dynamics [29]. Example
studies by our first approach not only demonstrate the onset of absolute incoherence as a result
of suppression of EID, but also display the notable distinction between the mechanisms of
EID and incoherence processes. In our second approach, for case III, by manipulating certain
intra-bath interactions we obtain exact, i.e. [�̂x/z, Ĥ B] = 0 (case III(a)) and approximate, i.e.
[�̂x/z, Ĥ B] � 0 (case III(b)) DFEs. To do so, we turn off certain intra-bath interactions which
are not alike to the system–environment couplings. The approximate DFEs are obtained from
the exact DFEs by setting the magnitude of the two-body intra-bath interaction strength to
Jx = 0.05ε while keeping the other bath parameters fixed. The presence of the two-body
intra-bath interactions spoils the symmetry conditions for DFEs. Consequently, the eigenstates
of Ĥ B are no longer the eigenstates of �̂x/z. However, since Jx = 0.05ε is a relatively weak
coupling, still strong enough to induce EID, these eigenstates should be very similar.

For cases I and III, we set the inverse bath temperature to β = 4ε−1, which is
the experimentally relevant temperature ∼50 mK for the charge-qubit QC proposal [33].
Exceptionally, for case II, a higher temperature β = 1.2121ε−1 is required for the emergence
of decoherence. This is because the examples studied in case II are free of EID as well
as decoherence by the incoherence process for β = 4ε−1. The strong σ̂x-type intra-bath
interactions used to induce fast internal bath dynamics also caused a large energy gap between
the ground and first excited states of the Ĥ B spectrum [29]. As a result, the only ground state
of Ĥ B is populated for β = 4ε−1 for which no decoherence is observed [29].

3.3. Exact numerical approach

For the given parameters for each different case above, we calculated the exact eigenvalues
En and eigenvectors |n〉 of the bath Hamiltonian by a Lanczos algorithm [36] for N = 10
bath qubits. This may seem a rather small bath size as compared to bath sizes used in the
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simulations of external decoherence dynamics. However, for internal decoherence dynamics,
the number of qubits that the central qubit interacts with is limited due to geometrical reasons
unless very long-range residual qubit–qubit interactions exist in a QC core. In such cases,
N = 10 would still be a small bath size. In this study, we simply ignore such long-range
interactions for the sake of computational convenience.

For a product initial condition of the form ρ̂(0) = ρ̂S(0) ⊗ ρ̂B(0), our initial subsystem
state is

ρ̂S(0) = |ψ(0)〉〈ψ(0)| with |ψ(0)〉 = (|0〉 + |1〉)/
√

2, (23)

and the initial thermal bath state is

ρ̂B(0) =
M∑

n=1

pn|n〉〈n| with pn = exp{−βEn}
/ M∑

m=1

exp{−βEm}. (24)

Since we are interested in the low-temperature regime, relevant to the charge-qubit QC
[33, 35], M = 20 was a good approximation for all our examples. We obtained the exact
quantum dynamics for the total density operator,

ρ̂(t) =
M∑

n=1

pnρ̂n(t) where ρ̂n(t) = |
n(t)〉〈
n(t)|, (25)

by numerically solving the Schrödinger equation d|
n(t)〉/dt = −(i/h̄)Ĥ |
n(t)〉 with
an eighth-order variable stepsize Runge–Kutta method [37] for each initial condition of
the form |
n(0)〉 = |ψ(0)〉 ⊗ |n〉, from which we obtained the reduced density operator
ρ̂S(t) = TrB{ρ̂(t)} by tracing over the environment degree of freedom.

3.4. Kraus approach

The Kraus operators for the Hamiltonian (19) take the form

K̂n(t) = √
pn exp

{
i

2h̄

(
Bz

0 σ̂
(0)
z + Bx

0 σ̂ (0)
x − 2bn

x/zσ̂
(0)
x/z

)
t

}
, (26)

where bn
x/z = 〈n|�̂x/z|n〉 are calculated by using the exact eigenstates |n〉 of the bath

Hamiltonian for all different cases. The time evolution of reduced density matrix elements for
the given temperature and initial condition is given by

ρ̂S(t) =
M∑

n=1

pn

( ∣∣cn
+(t)

∣∣2
cn

+(t)
[
cn
−(t)

]∗

cn
−(t)

[
cn

+(t)
]∗ ∣∣cn

−(t)
∣∣2

)
, (27)

where for the xx-type coupling:

cn
±(t) =

√
2

2

[
cos

(
an

x

2h̄
t

)
± i

(
Bz

0 ± Bn
x

)
an

x

sin

(
an

x

2h̄
t

)]
, (28)

an
x =

√
Bz

0
2 + Bn

x
2 and Bn

x = Bx
0 − 2bn

x, (29)

and for the zz-type coupling:

cn
±(t) =

√
2

2

[
cos

(
an

z

2h̄
t

)
± i

(
Bn

z ± Bx
0

)
an

z

sin

(
an

z

2h̄
t

)]
, (30)

an
z =

√
Bn

z
2 + Bx

0
2 and Bn

z = Bz
0 − 2bn

z . (31)
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3.5. Open system quantifiers

To characterize the open system dynamics, we employ two quantities: purity and fidelity.
Purity is a good measure of non-unitary effects such as decoherence and dissipation. Fidelity
on the other hand is sensitive to both non-unitary and unitary effects induced by an environment.
In the presence of coherent shifting, purity or fidelity alone may not suffice for a complete
characterization of the open system dynamics. Purity is invariant under unitary transformations
and thus cannot detect environment-induced coherent shifts. Also, when unitary effects
induced by an environment dominate non-unitary ones, it may not be possible to read the
extent of decoherence off the fidelity. However, by tandem use of purity and fidelity, a
comparison can be made and environment-induced unitary effects can be detected via the
observation of uncorrelated time evolutions of purity and fidelity.

The purity is defined as the trace of the square of the subsystem’s state,

P(t) = TrS
{
ρ̂2

S(t)
}
, (32)

while the fidelity,

F(t) = TrS
{
ρ̂S(t)ρ̂

free
S (t)

}
, (33)

where

ρ̂free
S (t) = exp{−(i/h̄)Ĥ St}ρ̂S(0) exp{(i/h̄)Ĥ St} (34)

is defined as an overlap between two states, the one of which undergoes the open system
evolution and the other evolves unitarily under the free system Hamiltonian. The ideal values
of purity and fidelity (i.e. in the absence of system–environment interactions) are unity for
pure initial conditions. However, when the system–environment interactions are in effect,
purity and fidelity deviate from their ideal value and take values less than unity.

Since our interest is in the incoherence part of decoherence dynamics, we also report our
exact results for the canonical covariance [31] to determine to what extent the approximate
conditions nullifying the SEE are actually satisfied. The non-vanishing values of the canonical
covariance therefore indicate that the SEE exists and the open system dynamics also has
contributions from EID. We calculate the covariance [31] for each populated pure state
component of the canonical bath density for xx- and zz-type couplings,

Cn
x/z(t) = Tr

{
σ̂

(0)
x/z�̂x/zρ̂n(t)

} − Tr
{
σ̂

(0)
x/zρ̂n(t)

}
Tr{�̂x/zρ̂n(t)}, (35)

from which we obtain the canonical covariance C(t) = ∑M
n=1 pnCn

x/z(t). Hereafter, for
simplicity, we refer to the canonical covariance as the covariance.

4. Results

In this section, we compare our exact numerical results to those of Kraus predictions for time
evolutions of purity P(t) and fidelity F(t) to examine the validity of approximate conditions,
i.e. C(t) → 0, supporting incoherence dynamics. We plot P(t) in figure 1 and F(t) in
figure 2 for xx-type coupling, and P(t) in figure 3 and F(t) in figure 4 for zz-type coupling.
Throughout the purity and fidelity figures we report our exact and Kraus decomposition results
for case I (the chaotic environment) in subfigure (a), for case II (the regular environment) in
subfigure (b) and for case III (approximate and exact DFEs) in subfigure (c). The time
evolution of covariance C(t) is plotted in figure 5 for both xx- and zz-type couplings.

Both the purity and fidelity plots show very good agreements between the exact and Kraus
results for both xx- and zz-type couplings. This indicates that the approximate conditions
supporting incoherence dynamics can readily be achieved to a good extent. However, as
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Figure 1. Time evolution of purity P(t) for exact (solid red) and Kraus decomposition (dashed
green) results in the case of xx-type coupling plotted in (a) for case I, the chaotic environment; in
(b) for case II, the regular environment and in (c) for case III, approximate and exact (dotted black)
decoherence-free environments. Time is in units of h̄/ε s.

indicated by the non-vanishing values of the covariance, EID is not completely suppressed
for all cases. For the same type of system–bath coupling, the purity and fidelity plots show
better agreements overall for case II than those observed for case I. For the different types of
system–bath couplings, both the purity and fidelity plots display better agreements overall for
xx-type coupling cases than those for the zz-type coupling.

In the case of the xx-type coupling, for case I, we see a very good agreement between
the purity plots for a short timescale t < 75h̄/ε, but for a long timescale t < 75h̄/ε, a
disagreement gradually evolves with time. The agreement between the fidelity plots is much
better, and small discrepancies only appear after t < 200h̄/ε. For cases II and III, both the
purity and fidelity plots show excellent agreements and the exact and Kraus results almost
exactly overlap at all times. The better agreements observed for cases II and III as compared
to case I can also be monitored from the covariance plots in figure 5(a).

In the case of the zz-type coupling, the purity plots for cases I and II display relatively
large discrepancies as compared to the xx-type coupling cases. While the discrepancies
for case I become more noticeable especially at long times, they do not worsen in time for
case II. The overall agreement seems slightly better for case II than for case I. The fidelity
plots also show noticeable discrepancies for both cases I and II for long dynamics. However,
for short-time dynamics t < 150h̄/ε, the agreements are good. For case III, the purity plots
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Figure 2. Time evolution of fidelity F(t) for exact (solid red) and Kraus decomposition (dashed
green) results in the case of xx-type coupling plotted in (a) for case I, chaotic environment; in
(b) for case II, regular environment and in (c) for case III, approximate and exact (dotted black)
decoherence-free environments. Time is in units of h̄/ε s.

show the largest discrepancies thus far and the agreement is only qualitative. Nevertheless,
the fidelity plots are in very good agreement. The covariance plots display larger magnitude
oscillations for the zz-type coupling which are indicators of disagreements between the exact
and Kraus results due to EID. However, these disagreements are acceptable and overall the
Kraus results are in very good agreement with the exact results.

We repeated our exact calculations a number of times for different realizations of the
random parameters of Ĥ B and compared our exact results to those of the Kraus decomposition.
We always obtained qualitatively good agreements between the Kraus and exact results. Hence,
the suppression of EID for cases I and II is quite generic effect, for at least the low-temperature
regime. However, we did not observe the same degree of accuracy reported here in all our
calculations. Especially for case I, we encountered some discrepancies between the Kraus
and exact results for certain realizations of the random parameters of Ĥ B , which indicates
that not all chaotic eigenstates, populated for the given bath temperature, are maximally
entangled. However, in principle, a set of parameters should exist for which all populated bath
states are maximally entangled and thus the absolute incoherence should be achievable. Our
numerical study is limited to the low-temperature regime. It would be interesting to investigate
decoherence dynamics for higher temperatures, where the number of populated bath states
will be larger and thus EID as well as incoherence may show interesting behavior.
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Figure 3. Time evolution of purity P(t) for exact (solid red) and Kraus decomposition (dashed
green) results in the case of the zz-type coupling plotted in (a) for case I, the chaotic environment;
in (b) for case II, the regular environment and in (c) for case III, approximate and exact (dotted
black) decoherence-free environments. Time is in units of h̄/ε s.

5. Discussions

This section is reserved for discussions of our results. Particularly, we discuss the origin
of the good agreements observed between the exact and Kraus decomposition results, quasi-
periodic behavior seen in the time evolutions of purity and fidelity, and approximate conditions
supporting the absolute decoherence dynamics.

5.1. Exact versus Kraus decomposition results

To achieve the absolute incoherence dynamics, we followed two different approaches. In
our first approach, in order to minimize the SEE, i.e. C(t) → 0, we used strong two-body
intra-bath interactions to maximize intra-bath entanglement [24], and we used strong one-
body intra-bath interactions to generate fast internal bath dynamics [29]. For case III, in our
second approach, we obtained approximate DFEs, i.e., [�̂x/z, Ĥ B] � 0 by turning off certain
one-body intra-bath interactions which are not alike to system–bath couplings. Hence, the
extent of the agreement between the exact and Kraus results for case I should primarily depend
on whether the eigenstates of Ĥ B are maximally entangled states, for case II it should depend
on how effectively the fast internal dynamics prevents the formation of the SEE, whereas
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Figure 4. Time evolution of fidelity F(t) for exact (solid red) and Kraus decomposition (dashed
green) results in the case of zz-type coupling plotted in (a) for case I, the chaotic environment; in
(b) for case II, the regular environment and in (c) for case III, approximate and exact (dotted black)
decoherence-free environments. Time is in units of h̄/ε s.

for case III it should only depend on how close the eigenstates of Ĥ B are to the eigenstates
of �̂x/z.

We have obtained better agreements between the Kraus and exact results for xx-type
coupling cases than for zz-type coupling cases. Recall that both one- and two-body intra-
bath interactions we used were of σ̂x type. Since the magnitude of these interactions was
strong, as compared to system–environment couplings λ, the environment Hamiltonian Ĥ B

is dominated by σ̂x-type interactions for cases I and II. The alikeness of �̂x and Ĥ B suggests
that the eigenstates of Ĥ B are also the eigenstates of �̂x or at least they must be very similar
and thus [�̂x, Ĥ B] � 0. Hence, the better agreements obtained for xx-type coupling cases
can be explained as a result of extra contribution due to the similarity of the eigenstates of
�̂x to the eigenstates of Ĥ B . However, zz-type coupling cases do not have such an extra
contribution. Since �̂x and �̂z are non-commuting operators, neither for case I nor for case
II, the eigenstates of �̂z should be similar to the eigenstates of Ĥ B . Therefore, the agreements
between the exact and Kraus results in the case of zz-type coupling cases must be only because
of the suppression of EID, i.e. C(t) � 0, via maximization of intra-bath entanglement for case
I and fast internal bath dynamics for case II. Therefore, cases I and II for the zz-type coupling
provide better representations of the effect of onset of absolute incoherence as a result of the
suppression of EID.
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Figure 5. Time evolution of covariance C(t) plotted in (a) for xx-type coupling and in (b) for
zz-type coupling. Case I: the chaotic environment (solid black), case II: the regular environment
(dotted green) and case III: approximate decoherence-free environments (dashed red). Time is in
units of h̄/ε s.

As noted above, the Kraus decomposition of incoherence (15) is identical to the CKD
derived in our previous studies [23]. While the CKD is only exact for the chaotic baths of
thermodynamics dimensions, the prediction of the CKD against exact results for a chaotic
bath of ten qubits showed excellent agreements [23]. The degree of accuracy obtained in
these studies [23] was quite unusual, given that the thermodynamics limit is not attained for
such a small bath of ten qubits and thus the off-diagonal matrix elements of the bath coupling
operator, while can still be small, should not be vanishing. Our current results suggest that the
accuracy of the Kraus decomposition for small chaotic baths, when the bath coupling operator
and the bath Hamiltonians are non-commuting, can better be explained based on the saturation
of intra-bath entanglement [24] rather than the vanishing off-diagonal matrix elements of the
bath coupling operator. The example studied for case I and zz-type coupling represents such
a case for which [�̂z, Ĥ B] �= 0 but C(t) � 0.

The examples studied in case III test the DFE condition. To generate exact DFEs, we
turned off one-body intra-bath interactions, i.e. Bz

c = 0ε for the xx-type coupling and Bx
c = 0ε

for the zz-type coupling and the residual two-body intra-bath interactions, i.e. Jx = 0ε for
both types of couplings. For approximate DFEs, we kept the two-body intra-bath interaction
strength at Jx = 0.05ε to see how the mixing effect that it may cause affects the agreements
between the Kraus and exact results. The better agreements observed for the xx-type coupling
are again due to the similarity between the xx-type coupling and the two-body intra-bath

16



J. Phys. A: Math. Theor. 42 (2009) 145302 M Çetinbaş

interactions. The presence of relatively small magnitude of two-body intra-bath interactions
did not deteriorate the agreements in the case of the xx-type coupling, as also seen in the
covariance plot in figure 5(a), but caused quite large disagreements between the purity plots
in the case of the zz-type coupling. These large disagreements are the signatures of EID, as
also indicated by the covariance plot in figure 5(b). The mixing effect induced by two-body
intra-bath interactions can also be monitored by a comparison between purity and fidelity plots
for approximate and exact DFEs. These interactions, while relatively weak, result in large
differences in the order of magnitude of purities, especially for xx-type coupling case, but
their effects on the fidelities are relatively weak.

5.2. Quasi-periodic behavior in dynamics of purity and fidelity

The purity and fidelity plots display a quasi-periodic to periodic behavior in some instances.
The purity plot for the chaotic bath as seen in figure 1(a) shows some recurrences,
whereas the purity plots for regular baths as seen in figures 1(b) and (c) do not. Moreover, the
fidelity plots show some sort of periodicity in almost all cases, and neither the magnitude nor
the dynamical behavior of fidelities does correlate with those of purities. The quasi-periodicity
in purity emerges as a result of small number of populated bath states for the given low bath
temperature. The magnitude of decoherence induced by incoherence dynamics grows with
bath temperature: higher the bath temperature,–and thus the number of populated bath states—
stronger the magnitude of decoherence in the system. Hence, the quasi-periodic behavior of
purity completely disappears at higher temperatures with increasing number of populated bath
states.

The quasi-periodicity of fidelities also arises due to the low bath temperature where
the time evolutions of purity and fidelity do not correlate. While the quasi-periodicity of
fidelity also disappears at high bath temperatures, where the dynamical behavior of purity
and fidelity should correlate better, the fidelity dynamics also displays completely periodic
behavior at absolute zero temperature, where decoherence vanishes. The periodicity in fidelity
dynamics appears due to the fact that unitary effects induced by an environment dominate
those of non-unitary ones at temperatures close to absolute zero. Since the purity is invariant
under unitary transformation, it cannot capture the environment-induced unitary effects. The
fidelity on the other hand is sensitive to both unitary and non-unitary effects. Hence, at
very low temperatures, while the magnitude of purity stays very close to unity, the fidelity
displays completely periodic behavior, and thus no correlation between purity and fidelity is
observed.

The period of fidelity can readily be estimated at absolute zero, where incoherence
dynamics is governed by a single Kraus operator K̂n=1(t), i.e. see equation (26). Here n = 1
stands for the ground state of the bath Hamiltonian. We obtained an analytic solution for the
fidelity dynamics, which is very cumbersome, and is not reported here. We found that

F(t) = 1
4 [3 + cos 2(ωs − ω0)t] (36)

is a perfect fit to the exact fidelity. Here ωs = an=1/2h is the frequency of the shifted system
Hamiltonian, where an=1

x/z are given by equations (29) and (31) for xx- and zz-type coupling

operators, respectively, and ω0 = (
Bz

0
2 + Bx

0
2)1/2/

2h is the frequency of the coherent time
evolution, see equation (20). Hence, the period of oscillatory fidelity dynamics is π/(ωs −ω0)

and is caused by the shift terms bn=1
x/z , given in equations (29) and (31). At temperatures close

to absolute zero, F(t) can also be approximated to a good degree by substituting bn=1
x/z with

the canonical averages B̄x/z = TrB{�̂x/zρ̂S(0)} in equations (29) and (31).
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5.3. Approximate conditions supporting incoherence dynamics

In our numerical study, we aimed to make a clear distinction between incoherence and EID
processes and test the validity of approximate conditions supporting absolute incoherence
dynamics. In the formulation of incoherence dynamics, we exploited the symmetry condition
[B̂μ, Ĥ B] = 0 on bath coupling operators to suppress the EID C(t) = 0. While this symmetry
condition allowed us for a straightforward derivation of the Kraus decomposition (15), it
appeared to be a rather strong assumption. Since recent studies of decoherence [23–29]
indicate that the suppression of EID, i.e. C(t) → 0, does not require a particular symmetry
condition on bath coupling operators, i.e. [B̂μ, Ĥ B] �= 0, it was of an interest to explore the
performance of our Kraus decomposition for the approximate condition [B̂μ, Ĥ B] �= 0 but
C(t) → 0.

We have chosen two particular examples (i.e. cases I and II for zz-type coupling �̂z) to
test the validity of the Kraus decomposition for the approximate condition. For these two
examples, while the environment dynamics was dominated by one– or two-body intra-bath
interactions of σ̂x type, i.e [�̂z, Ĥ B] �= 0, we obtained very good agreements between the
exact and Kraus results, along with C(t) � 0. These results suggest that C(t) → 0 leads to
absolute incoherence dynamics even though [B̂μ, Ĥ B] �= 0. In such instances, equation (12)
takes the approximate form

ρ̂n(t) � Ûn
S(t)ρ̂S(0)Û

n†
S (t) ⊗ ÛB(t)|n〉〈n|Û †

B(t), (37)

which can be interpreted as follows: system–environment interactions act as perturbations on
both system and environment degrees of freedoms. When an environment degree of freedom
is stable against such perturbations, i.e. its dynamics, in a sense, evolves in a decoherence-
free fashion as immune to the perturbations, the formation of non-local quantum correlations
between system and environment degrees of freedom can be avoided. It follows then that the
incoherence dynamics emerges as the only source of decoherence.

Our numerical results are limited to small spin baths designed for simulations of internal
decoherence dynamics arising in an isolated QC core in the presence of residual qubit–qubit
interactions. The external decoherence dynamics experienced by such an isolated QC core
may display very different decoherence effects due to larger bath sizes, different and wider
distributions of bath parameters and so forth. However, if the matter of interest is the agreement
between exact and Kraus results, we expect our Kraus decomposition to be accurate as long
as the conditions supporting absolute incoherence dynamics are met.

6. Summary

Decoherence is one of the biggest impediments to the development of quantum computing
technologies. The system–environment entanglement is one of the well-known, though not
the only, sources of decoherence. Even in the absence of system–environment entanglement,
decoherence may not be avoided. The current study was concerned with an alternative
mechanism of decoherence, i.e. the incoherence process, which originates from environment-
induced coherent quantum fluctuations. We established a symmetry condition on system–
environment interactions to separate the incoherence process from the entanglement-induced
decoherence and formulated the exact equation of motion for a quantum subsystem undergoing
the incoherence process. The equation of motion is of a Kraus decomposition form in which
each Kraus operator in the decomposition is explicitly defined. We exemplified incoherence
dynamics for a number of different situations including chaotic, regular and decoherence-free
environments.
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